Refine Your Search

Topic

Search Results

Standard

Passenger Car and Light Truck Axles

2001-11-01
HISTORICAL
J2200_200111
This SAE Recommended Practice is intended to outline basic nomenclature for axle designs in common use for automotive drives. Over a period of years, there have been many different designs; however, for the purpose of this report, only the most common designs have been selected and only their general construction is illustrated to show the nomenclature of the various parts.
Standard

Passenger Car and Light Truck Axles

2011-09-06
CURRENT
J2200_201109
This SAE Recommended Practice is intended to outline basic nomenclature for axle designs in common use for automotive drives. Over a period of years, there have been many different designs; however, for the purpose of this report, only the most common designs have been selected and only their general construction is illustrated to show the nomenclature of the various parts.
Standard

PROCEDURE FOR MEASURING BORE AND FACE RUNOUT OF FLYWHEELS, FLYWHEEL HOUSINGS, AND FLYWHEEL HOUSING ADAPTERS

1993-04-01
HISTORICAL
J1033_199304
This SAE Recommended Practice applies to any internal combustion engine which can utilize SAE No. 6 thru SAE No. 00 size flywheel housing. It provides instructions for correcting flywheel housing bore runout readings which are influenced by crankshaft bearing clearance. Limits for bore and face runout are specified in the various SAE Standards and Recommended Practices covering flywheels and flywheel housings.
Standard

PROCEDURE FOR MEASURING BORE AND FACE RUNOUT OF FLYWHEELS, FLYWHEEL HOUSINGS AND FLYWHEEL HOUSING ADAPTERS

1988-11-01
HISTORICAL
J1033_198811
This recommended practice applies to any internal combustion engine which can utilize SAE No. 6 thru SAE No. 00 size flywheel housing. It provides instructions for correcting flywheel housing bore runout readings which are influenced by crankshaft bearing clearance. Limits for bore and face runout are specified in the various SAE Standards and Recommended Practices covering flywheels and flywheel housings.
Standard

PASSENGER CAR AND LIGHT TRUCK AXLES

1991-01-09
HISTORICAL
J2200_199101
This SAE Recommended Practice is intended to outline basic nomenclature for axle designs in common use for automotive drives. Over a period of years, there have been many different designs; however, for the purpose of this report, only the most common designs have been selected and only their general construction is illustrated to show the nomenclature of the various parts.
Standard

Overcenter Clutch Spin Test Procedure

2012-10-23
CURRENT
J1079_201210
This SAE Recommended Practice applies to driving ring type overcenter clutches such as are used in industrial power takeoffs.
Standard

OVERCENTER CLUTCH SPIN TEST PROCEDURE

1988-09-01
HISTORICAL
J1079_198809
This recommended practice applies to driving ring type overcenter clutches such as are used in industrial power takeoffs.
Standard

OVERCENTER CLUTCH SPIN TEST PROCEDURE

1995-03-28
HISTORICAL
J1079_199503
This SAE Recommended Practice applies to driving ring type overcenter clutches such as are used in industrial power takeoffs.
Standard

O.D. Coatings for Radial Lip-Type Shaft Seals

2002-10-25
CURRENT
J1947_200210
This SAE Information Report covers thin coatings of resinous based materials that can be placed on the metallic outer diameter of radial lip-type shaft seals to provide sealing when the mating bore finish is too rough to insure a proper seal (typically when finish exceeds 2.54 µm Ra, or in pressurized applications.) The coatings will have the following characteristics: a. Material shall dry to a tough, flexible, and non-tacky film. b. Thickness typically ranges from 0.005 to 0.076 mm. c. It shall not crack, flake, or powder when scraped. d. Coating shall adhere to seal case as noted in text. e. The sealer shall not show any evidence of peeling, blistering, softening, or dissolution when tested in media to be sealed.
Standard

NONMETALLIC GASKETS FOR GENERAL AUTOMOTIVE PURPOSES

1963-04-01
HISTORICAL
J90A_196304
These specifications for SAE J90 are intended to define the basic properties of commercial nonmetallic gasketing materials commonly used in automotive applications. These include materials composed of asbestos or other inorganic fibers, cork, or cellulose or other organic fibers, in combination with various binders or impregnants. Rubber compounds without fibrous or cork reinforcement are not included since they are covered in SAE Standard, Specifications for Elastomer Compounds for Automotive Applications—SAE J14, and in ASTM D 735-61T. Although the test methods and values are designed to describe the basic properties of the material in each category, they do not define all of, the properties which govern gasket performance. Caution should, therefore, be exercised in using these specifications as a basis for the selection of materials.
Standard

Multiposition Small Engine Exhaust System Fire Ignition Suppression

2020-10-06
CURRENT
J335_202010
This SAE Recommended Practice establishes equipment and test procedures for determining the performance of spark arrester exhaust systems of multiposition small engines (<19 kW) used in portable applications, including hand-held, hand-guided, and backpack mounted devices. It is not applicable to spark arresters used in vehicles or stationary equipment.
Standard

Multiposition Small Engine Exhaust System Fire Ignition Suppression

2012-10-23
HISTORICAL
J335_201210
This SAE Recommended Practice establishes equipment and test procedures for determining the performance of spark arrester exhaust systems of multiposition small engines (<19 kW) used in portable applications, including hand-held, hand-guided, and backpack mounted devices. It is not applicable to spark arresters used in vehicles or stationary equipment.
Standard

Medium- and Heavy-Duty Truck Converter/Muffler Configuration

2001-11-15
CURRENT
J1642_200111
This SAE Draft Technical Report is intended to document the technical consensus of the current design state of converter/mufflers for heavy-duty emission classification diesel vehicle applications. This will maximize standardization and promote interchangeability of parts from different manufacturers. The purpose of this SAE Draft Technical Report is to give the technical community the opportunity to review, comment on, and use the Draft Technical Report prior to its final approval by SAE.
Standard

Measurement of Intake Air or Exhaust Gas Flow of Diesel Engines

2011-06-13
CURRENT
J244_201106
This procedure establishes recommendations on the measurement of diesel engine intake air flow under steady-state test conditions. The measurement methods discussed have been limited to metering systems and associated equipment found in common usage in the industry, specifically, nozzles, laminar flow devices, and vortex shedding. The procedure establishes accuracy goals as well as explains proper usage of equipment. The recommendations concerning diesel engine exhaust mass flow measurements are minimal in scope.
Standard

Maximum Allowable Rotational Speed for Internal Combustion Engine Flywheels

2012-10-23
CURRENT
J1456_201210
This SAE Recommended Practice applies to flywheels and flywheel-starter ring gear assemblies used with internal combustion engines of the spark ignition and diesel type equipped with a governor or speed limiting device. Engine sizes are those capable of using SAE No. 6 through SAE No. 00 flywheel housings. This document applies to methods used to determine the rotational speed capability of flywheels for stresses imposed by centrifugal forces only.
Standard

Manual Transmissions and Transaxle High-speed Lubrication, Unbalance, and Seizure Evaluation

1999-09-09
HISTORICAL
J2132_199909
It is anticipated that this SAE Recommended Practice will be only one step in a comprehensive evaluation of the vehicle/transmission application. This document alone is not adequate “due care” to insure against high-speed seizure or other high-speed problems. The notes printed in bold print throughout the practice convey important information about the test itself or the results and should be considered carefully. All references to transmissions also apply to transaxles, except for the unbalance evaluation which applies only to rear-wheel-drive transmissions with propeller shaft output.
Standard

Manual Transmissions and Transaxle High-speed Lubrication, Unbalance, and Seizure Evaluation

2011-09-06
CURRENT
J2132_201109
It is anticipated that this SAE Recommended Practice will be only one step in a comprehensive evaluation of the vehicle/transmission application. This document alone is not adequate “due care” to insure against high-speed seizure or other high-speed problems. The notes printed in bold print throughout the practice convey important information about the test itself or the results and should be considered carefully. All references to transmissions also apply to transaxles, except for the unbalance evaluation which applies only to rear-wheel-drive transmissions with propeller shaft output.
Standard

Manual Transmission and Transaxle Efficiency and Parasitic Loss Measurement

1999-08-30
HISTORICAL
J2453_199908
Because of the intense focus on CAFE and fuel emission standards, optimization of the automobile drivetrain is imperative. In light of this, component efficiencies have become an important factor in the drivetrain decision-making process. It has therefore become necessary to develop a universal standard to judge transmission efficiency. This SAE Recommended Practice specifies the dynamometer test procedure which maps a manual transmission’s efficiency. The document is separated into two parts. The first compares input and output torque throughout a specified input speed range in order to determine “in-gear” transmission efficiency. The second procedure measures parasitic losses experienced while in neutral at nominal idling speeds and also churning losses while in gear. The application of this document is intended for passenger car and light truck. All references to transmissions throughout this document include transaxles.
X